Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.028
Filtrar
1.
Gen Comp Endocrinol ; 352: 114514, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582175

RESUMO

Hormonal influence on hepatic function is a critical aspect of whole-body energy balance in vertebrates. Catecholamines and corticosteroids both influence hepatic energy balance via metabolite mobilization through glycogenolysis and gluconeogenesis. Elasmobranchs have a metabolic organization that appears to prioritize the mobilization of hepatic lipid as ketone bodies (e.g. 3-hydroxybutyrate [3-HB]), which adds complexity in determining the hormonal impact on hepatic energy balance in this taxon. Here, a liver perfusion was used to investigate catecholamine (epinephrine [E]) and corticosteroid (corticosterone [B] and 11-deoxycorticosterone [DOC]) effects on the regulation of hepatic glucose and 3-HB balance in the North Pacific Spiny dogfish, Squalus suckleyi. Further, hepatic enzyme activity involved in ketogenesis (3-hydroxybutyrate dehydrogenase), glycogenolysis (glycogen phosphorylase), and gluconeogenesis (phosphoenolpyruvate carboxykinase) were assessed in perfused liver tissue following hormonal application to discern effects on hepatic energy flux. mRNA transcript abundance key transporters of glucose (glut1 and glut4) and ketones (mct1 and mct2) and glucocorticoid function (gr, pepck, fkbp5, and 11ßhsd2) were also measured to investigate putative cellular components involved in hepatic responses. There were no changes in the arterial-venous difference of either metabolite in all hormone perfusions. However, perfusion with DOC increased gr transcript abundance and decreased flow rate of perfusions, suggesting a regulatory role for this corticosteroid. Phosphoenolpyruvate carboxykinase activity increased following all hormone treatments, which may suggest gluconeogenic function; E also increased 3-hydroxybutyrate dehydrogenase activity, suggesting a function in ketogenesis, and decreased pepck and fkbp5 transcript abundance, potentially showing some metabolic regulation. Overall, we demonstrate hormonal control of hepatic energy balance using liver perfusions at various levels of biological organization in an elasmobranch.


Assuntos
Squalus acanthias , Squalus , Animais , Glucose/metabolismo , Squalus/metabolismo , Squalus acanthias/metabolismo , Hidroxibutirato Desidrogenase/metabolismo , Fosfoenolpiruvato/metabolismo , Fígado/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Corpos Cetônicos/metabolismo , Gluconeogênese , Hormônios/metabolismo , Corticosteroides/metabolismo
2.
J Mol Biol ; 436(9): 168553, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548260

RESUMO

The catalytic cycle of Enzyme I (EI), a phosphotransferase enzyme responsible for converting phosphoenolpyruvate (PEP) into pyruvate, is characterized by a series of local and global conformational rearrangements. This multistep process includes a monomer-to-dimer transition, followed by an open-to-closed rearrangement of the dimeric complex upon PEP binding. In the present study, we investigate the thermodynamics of EI dimerization using a range of high-pressure solution NMR techniques complemented by SAXS experiments. 1H-15N TROSY and 1H-13C methyl TROSY NMR spectra combined with 15N relaxation measurements revealed that a native-like engineered variant of full-length EI fully dissociates into stable monomeric state above 1.5 kbar. Conformational ensembles of EI monomeric state were generated via a recently developed protocol combining coarse-grained molecular simulations with experimental backbone residual dipolar coupling measurements. Analysis of the structural ensembles provided detailed insights into the molecular mechanisms driving formation of the catalytically competent dimeric state, and reveals that each step of EI catalytical cycle is associated with a significant reduction in either inter- or intra-domain conformational entropy. Altogether, this study completes a large body work conducted by our group on EI and establishes a comprehensive structural and dynamical description of the catalytic cycle of this prototypical multidomain, oligomeric enzyme.


Assuntos
Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato , Fosfotransferases (Aceptor do Grupo Nitrogenado) , Conformação Proteica , Multimerização Proteica , Espalhamento a Baixo Ângulo , Termodinâmica , Ressonância Magnética Nuclear Biomolecular , Modelos Moleculares , Espectroscopia de Ressonância Magnética/métodos , Difração de Raios X , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-38285614

RESUMO

As a key molecular scaffold for various flavonoids, naringenin is a value-added chemical with broad pharmaceutical applicability. For efficient production of naringenin from acetate, it is crucial to precisely regulate the carbon flux of the oxaloacetate-phosphoenolpyruvate (OAA-PEP) regulatory node through appropriate pckA expression control, as excessive overexpression of pckA can cause extensive loss of OAA and metabolic imbalance. However, considering the critical impact of pckA on naringenin biosynthesis, the conventional strategy of transcriptional regulation of gene expression is limited in its ability to cover the large and balanced solution space. To overcome this hurdle, in this study, pckA expression was fine-tuned at both the transcriptional and translational levels in a combinatorial expression library for the precise exploration of optimal naringenin production from acetate. Additionally, we identified the effects of regulating pckA expression by validating the correlation between phosphoenolpyruvate kinase (PCK) activity and naringenin production. As a result, the flux-optimized strain exhibited a 49.8-fold increase compared with the unoptimized strain, producing 122.12 mg/L of naringenin. Collectively, this study demonstrated the significance of transcriptional and translational flux rebalancing at the key regulatory node, proposing a pivotal metabolic engineering strategy for the biosynthesis of various flavonoids derived from naringenin using acetate. ONE-SENTENCE SUMMARY: In this study, transcriptional and translational regulation of pckA expression at the crucial regulatory node was conducted to optimize naringenin biosynthesis using acetate in E. coli.


Assuntos
Escherichia coli , Flavanonas , Flavonoides , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfoenolpiruvato/metabolismo , Flavonoides/metabolismo , Acetatos/metabolismo
4.
Nat Prod Rep ; 41(4): 604-648, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38170905

RESUMO

Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.


Assuntos
Ácidos Cicloexanocarboxílicos , Cicloexenos , Ácido Chiquímico , Ácido Chiquímico/análogos & derivados , Ácido Chiquímico/metabolismo , Estrutura Molecular , Ácido Corísmico/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfatos Açúcares/metabolismo , Bactérias/metabolismo , Fungos/metabolismo , Plantas/metabolismo
5.
Nutr Res ; 120: 135-144, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000279

RESUMO

Evidence has demonstrated that oxidative stress plays a crucial role in regulating cellular glucose metabolism. In previous studies, wheat germ peptide (WGP) was found to effectively mitigate oxidative stress induced by high glucose. Based on the information provided, we hypothesized that WGP could exhibit antihyperglycemic and anti-insulin-resistant effects in cells. The insulin-resistant cell model was established by insulin stimulation. The glucose consumption, glycogen content, and the activities of hexokinase and pyruvate kinase following WGP treatment were measured. The protein expression of SOCS3, phosphorylated insulin receptor substrate-1 (p-IRS1), IRS1, phosphorylated protein kinase B (p-Akt), Akt, glucose transporter 2 (GLUT2), phosphorylated GSK 3ß, GSK 3ß, FOXO1, G6P, and phosphoenolpyruvate carboxykinase were assessed by western blot analysis. Our results demonstrated that WGP treatment increased cellular glucose consumption and glycogen synthesis and enhanced hexokinase and pyruvate kinase activities. Additionally, WGP treatment was observed to cause a significant reduction in the expression of SOCS3, FOXO1, G6P, and phosphoenolpyruvate carboxykinase, as well as in the ratio of p-IRS1/IRS1. Conversely, the expression of GLUT2 and the ratios of p-Akt/Akt and p-GSK3ß/GSK3ß were upregulated by WGP. These findings suggested that WGP can activate the SOCS3/IRS1/Akt signaling pathway, thus promoting the phosphorylation of GSK-3ß and increasing the expression of FOXO1 and GLUT2, which contribute to enhancing glycogen synthesis, inhibiting gluconeogenesis, and promoting glucose transport in insulin-resistant HepG2 cells.


Assuntos
Resistência à Insulina , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Triticum , Proteínas Substratos do Receptor de Insulina/metabolismo , Hexoquinase/metabolismo , Hexoquinase/farmacologia , Piruvato Quinase/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacologia , Hepatócitos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Glicogênio/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
6.
J Physiol ; 601(24): 5655-5667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37983196

RESUMO

Pancreatic beta cells secrete insulin in response to plasma glucose. The ATP-sensitive potassium channel (KATP ) links glucose metabolism to islet electrical activity in these cells by responding to increased cytosolic [ATP]/[ADP]. It was recently proposed that pyruvate kinase (PK) in close proximity to beta cell KATP locally produces the ATP that inhibits KATP activity. This proposal was largely based on the observation that applying phosphoenolpyruvate (PEP) and ADP to the cytoplasmic side of excised inside-out patches inhibited KATP . To test the relative contributions of local vs. mitochondrial ATP production, we recorded KATP activity using mouse beta cells and INS-1 832/13 cells. In contrast to prior reports, we could not replicate inhibition of KATP activity by PEP + ADP. However, when the pH of the PEP solutions was not corrected for the addition of PEP, strong channel inhibition was observed as a result of the well-known action of protons to inhibit KATP . In cell-attached recordings, perifusing either a PK activator or an inhibitor had little or no effect on KATP channel closure by glucose, further suggesting that PK is not an important regulator of KATP . In contrast, addition of mitochondrial inhibitors robustly increased KATP activity. Finally, by measuring the [ATP]/[ADP] responses to imposed calcium oscillations in mouse beta cells, we found that oxidative phosphorylation could raise [ATP]/[ADP] even when ADP was at its nadir during the burst silent phase, in agreement with our mathematical model. These results indicate that ATP produced by mitochondrial oxidative phosphorylation is the primary controller of KATP in pancreatic beta cells. KEY POINTS: Phosphoenolpyruvate (PEP) plus adenosine diphosphate does not inhibit KATP activity in excised patches. PEP solutions only inhibit KATP activity if the pH is unbalanced. Modulating pyruvate kinase has minimal effects on KATP activity. Mitochondrial inhibition, in contrast, robustly potentiates KATP activity in cell-attached patches. Although the ADP level falls during the silent phase of calcium oscillations, mitochondria can still produce enough ATP via oxidative phosphorylation to close KATP . Mitochondrial oxidative phosphorylation is therefore the main source of the ATP that inhibits the KATP activity of pancreatic beta cells.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacologia , Piruvato Quinase/metabolismo , Piruvato Quinase/farmacologia , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo , Mitocôndrias/metabolismo
7.
Nat Metab ; 5(10): 1765-1786, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667133

RESUMO

Metabolic reprogramming is associated with resistance to antiangiogenic therapy in cancer. However, its molecular mechanisms have not been clearly elucidated. Here, we identify the glycolytic enzyme enolase 2 (ENO2) as a driver of resistance to antiangiogenic therapy in colorectal cancer (CRC) mouse models and human participants. ENO2 overexpression induces neuroendocrine differentiation, promotes malignant behaviour in CRC and desensitizes CRC to antiangiogenic drugs. Mechanistically, the ENO2-derived metabolite phosphoenolpyruvate (PEP) selectively inhibits histone deacetylase 1 (HDAC1) activity, which increases the acetylation of ß-catenin and activates the ß-catenin pathway in CRC. Inhibition of ENO2 with enolase inhibitors AP-III-a4 or POMHEX synergizes the efficacy of antiangiogenic drugs in vitro and in mice bearing drug-resistant CRC xenograft tumours. Together, our findings reveal that ENO2 constitutes a useful predictive biomarker and therapeutic target for resistance to antiangiogenic therapy in CRC, and uncover a previously undefined and metabolism-independent role of PEP in regulating resistance to antiangiogenic therapy by functioning as an endogenous HDAC1 inhibitor.


Assuntos
Histona Desacetilase 1 , beta Catenina , Humanos , Animais , Camundongos , beta Catenina/metabolismo , Fosfoenolpiruvato , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Fosfopiruvato Hidratase/genética
8.
Eur J Immunol ; 53(12): e2350536, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37724936

RESUMO

Viral infections can result in metabolism rewiring of host cells, which in turn affects the viral lifecycle. Phosphoenolpyruvate (PEP), a metabolic intermediate in the glycolytic pathway, plays important roles in several biological processes including anti-tumor T cell immunity. However, whether PEP might participate in modulating viral infection remains largely unknown. Here, we demonstrate that PEP generally inhibits viral replication via upregulation of apoptosis-associated tyrosine kinase (AATK) expression. Targeted metabolomic analyses have shown that the intracellular level of PEP was increased upon viral infection. PEP treatment significantly restricted viral infection and hence declined subsequent inflammatory response both in vitro and in vivo. Besides, PEP took inhibitory effect on the stage of viral replication and also decreased the mortality of mice with viral infection. Mechanistically, PEP significantly promoted the expression of AATK. Knockdown of AATK led to enhanced viral replication and consequent increased levels of cytokines. Moreover, AATK deficiency disabled the antiviral effect of PEP. Together, our study reveals a previously unknown role of PEP in broadly inhibiting viral replication by promoting AATK expression, highlighting the potential application of activation or upregulation of the PEP-AATK axis in controlling viral infections.


Assuntos
Glicólise , Viroses , Camundongos , Animais , Fosfoenolpiruvato/farmacologia
9.
Cell Metab ; 35(9): 1630-1645.e5, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541251

RESUMO

Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Fosfoenolpiruvato/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas/metabolismo , Fígado/metabolismo , Lisina/metabolismo , Glucose/metabolismo
10.
J Biol Chem ; 299(7): 104892, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286036

RESUMO

Glycolysis is the primary metabolic pathway in the strictly fermentative Streptococcus pneumoniae, which is a major human pathogen associated with antibiotic resistance. Pyruvate kinase (PYK) is the last enzyme in this pathway that catalyzes the production of pyruvate from phosphoenolpyruvate (PEP) and plays a crucial role in controlling carbon flux; however, while S. pneumoniae PYK (SpPYK) is indispensable for growth, surprisingly little is known about its functional properties. Here, we report that compromising mutations in SpPYK confers resistance to the antibiotic fosfomycin, which inhibits the peptidoglycan synthesis enzyme MurA, implying a direct link between PYK and cell wall biogenesis. The crystal structures of SpPYK in the apo and ligand-bound states reveal key interactions that contribute to its conformational change as well as residues responsible for the recognition of PEP and the allosteric activator fructose 1,6-bisphosphate (FBP). Strikingly, FBP binding was observed at a location distinct from previously reported PYK effector binding sites. Furthermore, we show that SpPYK could be engineered to become more responsive to glucose 6-phosphate instead of FBP by sequence and structure-guided mutagenesis of the effector binding site. Together, our work sheds light on the regulatory mechanism of SpPYK and lays the groundwork for antibiotic development that targets this essential enzyme.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Fosfomicina , Piruvato Quinase , Streptococcus pneumoniae , Humanos , Antibacterianos/farmacologia , Fosfomicina/farmacologia , Cinética , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética
11.
J Am Soc Nephrol ; 34(8): 1343-1365, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199399

RESUMO

SIGNIFICANCE STATEMENT: Renal gluconeogenesis plays an important role in the pathogenesis of diabetic nephropathy (DN). Proximal tubular phosphoenolpyruvate carboxykinase1 (PEPCK1) is the rate-limiting enzyme in gluconeogenesis. However, the functions of PEPCK1 have not been elucidated. We describe the novel role of PEPCK1 as a mitoribosomal protector using Pck1 transgenic (TG) mice and knockout mice. Pck1 blocks excessive glycolysis by suppressing the upregulation of excess HK2 (the rate-limiting enzyme of glycolysis). Notably, Pck1 overexpression retains mitoribosomal function and suppresses renal fibrosis. The renal and mitoribosomal protective roles of Pck1 may provide important clues for understanding DN pathogenesis and provide novel therapeutic targets. BACKGROUND: Phosphoenolpyruvate carboxykinase (PEPCK) is part of the gluconeogenesis pathway, which maintains fasting glucose levels and affects renal physiology. PEPCK consists of two isoforms-PEPCK1 and PEPCK2-that the Pck1 and Pck2 genes encode. Gluconeogenesis increases in diabetic nephropathy (DN), escalating fasting and postprandial glucose levels. Sodium-glucose cotransporter-2 inhibitors increase hepatic and renal gluconeogenesis. We used genetically modified mice to investigate whether renal gluconeogenesis and Pck1 activity are renoprotective in DN. METHODS: We investigated the expression of Pck1 in the proximal tubule (PTs) of streptozotocin (STZ)-treated diabetic mice. We studied the phenotypic changes in PT-specific transgenic (TG) mice and PT-specific Pck1 conditional knockout (CKO) mice. RESULTS: The expression of Pck1 in PTs was downregulated in STZ-treated diabetic mice when they exhibited albuminuria. TG mice overexpressing Pck1 had improved albuminuria, concomitant with the mitigation of PT cell apoptosis and deposition of peritubular type IV collagen. Moreover, CKO mice exhibited PT cell apoptosis and type IV collagen deposition, findings also observed in STZ-treated mice. Renal fibrotic changes in CKO mice were associated with increasing defects in mitochondrial ribosomes (mitoribosomes). The TG mice were protected against STZ-induced mitoribosomal defects. CONCLUSION: PCK1 preserves mitoribosomal function and may play a novel protective role in DN.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inibidores do Transportador 2 de Sódio-Glicose , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Colágeno Tipo IV , Albuminúria , Fosfoenolpiruvato , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Fibrose , Camundongos Knockout , Glucose/metabolismo
12.
Proteins ; 91(9): 1261-1275, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226637

RESUMO

Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.


Assuntos
Propionibacterium freudenreichii , Fosfoenolpiruvato , Propionibacterium freudenreichii/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Ácido Oxaloacético/química , Guanosina Trifosfato , Nucleotídeos , Trifosfato de Adenosina , Cinética
13.
Am J Physiol Renal Physiol ; 324(6): F532-F543, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102687

RESUMO

Phosphoenolpyruvate carboxykinase 1 (PCK1 or PEPCK-C) is a cytosolic enzyme converting oxaloacetate to phosphoenolpyruvate, with a potential role in gluconeogenesis, ammoniagenesis, and cataplerosis in the liver. Kidney proximal tubule cells display high expression of this enzyme, whose importance is currently not well defined. We generated PCK1 kidney-specific knockout and knockin mice under the tubular cell-specific PAX8 promoter. We studied the effect of PCK1 deletion and overexpression at the renal level on tubular physiology under normal conditions and during metabolic acidosis and proteinuric renal disease. PCK1 deletion led to hyperchloremic metabolic acidosis characterized by reduced but not abolished ammoniagenesis. PCK1 deletion also resulted in glycosuria, lactaturia, and altered systemic glucose and lactate metabolism at baseline and during metabolic acidosis. Metabolic acidosis resulted in kidney injury in PCK1-deficient animals with decreased creatinine clearance and albuminuria. PCK1 further regulated energy production by the proximal tubule, and PCK1 deletion decreased ATP generation. In proteinuric chronic kidney disease, mitigation of PCK1 downregulation led to better renal function preservation. PCK1 is essential for kidney tubular cell acid-base control, mitochondrial function, and glucose/lactate homeostasis. Loss of PCK1 increases tubular injury during acidosis. Mitigating kidney tubular PCK1 downregulation during proteinuric renal disease improves renal function.NEW & NOTEWORTHY Phosphoenolpyruvate carboxykinase 1 (PCK1) is highly expressed in the proximal tubule. We show here that this enzyme is crucial for the maintenance of normal tubular physiology, lactate, and glucose homeostasis. PCK1 is a regulator of acid-base balance and ammoniagenesis. Preventing PCK1 downregulation during renal injury improves renal function, rendering it an important target during renal disease.


Assuntos
Acidose , Rim , Animais , Camundongos , Acidose/metabolismo , Glucose/metabolismo , Rim/metabolismo , Lactatos/metabolismo , Mitocôndrias/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo
14.
Mol Ther ; 31(7): 2120-2131, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081789

RESUMO

IL-17-producing antigen-specific human T cells elicit potent antitumor activity in mice. Yet, refinement of this approach is needed to position it for clinical use. While activation signal strength regulates IL-17 production by CD4+ T cells, the degree to which T cell antigen receptor (TCR) and costimulation signal strength influences Th17 immunity remains unknown. We discovered that decreasing TCR/costimulation signal strength by incremental reduction of αCD3/costimulation beads progressively altered Th17 phenotype. Moreover, Th17 cells stimulated with αCD3/inducible costimulator (ICOS) beads produced more IL-17A, IFNγ, IL-2, and IL-22 than those stimulated with αCD3/CD28 beads. Compared with Th17 cells stimulated with the standard, strong signal strength (three beads per T cell), Th17 cells propagated with 30-fold fewer αCD3/ICOS beads were less reliant on glucose and favored the central carbon pathway for bioenergetics, marked by abundant intracellular phosphoenolpyruvate (PEP). Importantly, Th17 cells stimulated with weak αCD3/ICOS beads and redirected with a chimeric antigen receptor that recognizes mesothelin were more effective at clearing human mesothelioma. Less effective CAR Th17 cells generated with high αCD3/ICOS beads were rescued by overexpressing phosphoenolpyruvate carboxykinase 1 (PCK1), a PEP regulator. Thus, Th17 therapy can be improved by using fewer activation beads during manufacturing, a finding that is cost effective and directly translatable to patients.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis , Interleucina-17 , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Antígenos CD28/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Interleucina-17/metabolismo , Ativação Linfocitária , Fosfoenolpiruvato/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Células Th17/metabolismo
15.
J Bioenerg Biomembr ; 55(2): 103-114, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046136

RESUMO

Endothelial dysfunction is a key early link in the pathogenesis of atherosclerosis, and the accumulation of senescent vascular endothelial cells causes endothelial dysfunction. Phosphoenolpyruvate (PEP), which is a high-energy glycolytic intermediate, protects against ischemia-reperfusion injury in isolated rat lung, heart, and liver tissue by quickly providing ATP. However, it was reported that serum PEP concentrations are 13-fold higher in healthy elderly compare to the young. Unlike that of other cell types, the energy required for the physiological function of endothelial cells is mainly derived from glycolysis. Recently, it is unclear whether circulating accumulation of PEP affects endothelial cell function. In this study, we found for the first time that 50-250 µM of PEP significantly promoted THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs) through increased expression of vascular endothelial adhesion factor 1 (VCAM1) and intercellular adhesion factor 1 (ICAM1) in HUVECs. Meanwhile, 50-250 µM of PEP decreased the expression of endothelial nitric oxide synthase (eNOS) and cellular level of nitric oxide (NO) in HUVECs. Moreover, PEP increased levels of ROS, enhanced the numbers of SA-ß-Gal-positive cells and upregulated the expression of cell cycle inhibitors such as p21, p16 and the phosphorylation level of p53 on Ser15, and the expression of proinflammatory factors including TNF-α, IL-1ß, IL-6, IL-8, IL-18 and MCP-1 in HUVECs. Furthermore, PEP increased both oxygen consumption rate (OCR) and glycolysis rate, and was accompanied by reduced NAD+/NADH ratios and enhanced phosphorylation levels of AMPKα (Thr172), p38 MAPK (T180/Y182) and NF-κB p65 (Ser536) in HUVECs. Notably, PEP had no significant effect on hepG2 cells. In conclusion, these results demonstrated that PEP induced dysfunction and senescence in vascular endothelial cells through stimulation of metabolic reprogramming.


Assuntos
Senescência Celular , Transdução de Sinais , Ratos , Animais , Humanos , Idoso , Células Cultivadas , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia
16.
Acta Crystallogr D Struct Biol ; 79(Pt 4): 290-303, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36974963

RESUMO

Phosphoketolase and transketolase are thiamine diphosphate-dependent enzymes and play a central role in the primary metabolism of bifidobacteria: the bifid shunt. The enzymes both catalyze phosphorolytic cleavage of xylulose 5-phosphate or fructose 6-phosphate in the first reaction step, but possess different substrate specificity in the second reaction step, where phosphoketolase and transketolase utilize inorganic phosphate (Pi) and D-ribose 5-phosphate, respectively, as the acceptor substrate. Structures of Bifidobacterium longum phosphoketolase holoenzyme and its complex with a putative inhibitor, phosphoenolpyruvate, were determined at 2.5 Šresolution by serial femtosecond crystallography using an X-ray free-electron laser. In the complex structure, phosphoenolpyruvate was present at the entrance to the active-site pocket and plugged the channel to thiamine diphosphate. The phosphate-group position of phosphoenolpyruvate coincided well with those of xylulose 5-phosphate and fructose 6-phosphate in the structures of their complexes with transketolase. The most striking structural change was observed in a loop consisting of Gln546-Asp547-His548-Asn549 (the QN-loop) at the entrance to the active-site pocket. Contrary to the conformation of the QN-loop that partially covers the entrance to the active-site pocket (`closed form') in the known crystal structures, including the phosphoketolase holoenzyme and its complexes with reaction intermediates, the QN-loop in the current ambient structures showed a more compact conformation with a widened entrance to the active-site pocket (`open form'). In the phosphoketolase reaction, the `open form' QN-loop may play a role in providing the binding site for xylulose 5-phosphate or fructose 6-phosphate in the first step, and the `closed form' QN-loop may help confer specificity for Pi in the second step.


Assuntos
Bifidobacterium longum , Tiamina Pirofosfato , Tiamina Pirofosfato/química , Tiamina Pirofosfato/metabolismo , Bifidobacterium longum/metabolismo , Cristalografia por Raios X , Transcetolase/química , Transcetolase/metabolismo , Fosfoenolpiruvato , Temperatura , Xilulose , Domínio Catalítico , Frutose
17.
Cell Rep ; 42(3): 112205, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857180

RESUMO

Aerobic glycolysis, a metabolic pathway essential for effector T cell survival and proliferation, regulates differentiation of autoimmune T helper (Th) 17 cells, but the mechanism underlying this regulation is largely unknown. Here, we identify a glycolytic intermediate metabolite, phosphoenolpyruvate (PEP), as a negative regulator of Th17 differentiation. PEP supplementation or inhibition of downstream glycolytic enzymes in differentiating Th17 cells increases intracellular PEP levels and inhibits interleukin (IL)-17A expression. PEP supplementation inhibits expression of signature molecules for Th17 and Th2 cells but does not significantly affect glycolysis, cell proliferation, or survival of T helper cells. Mechanistically, PEP binds to JunB and inhibits DNA binding of the JunB/basic leucine zipper transcription factor ATF-like (BATF)/interferon regulatory factor 4 (IRF4) complex, thereby modulating the Th17 transcriptional program. Furthermore, daily administration of PEP to mice inhibits generation of Th17 cells and ameliorates Th17-dependent autoimmune encephalomyelitis. These data demonstrate that PEP links aerobic glycolysis to the Th17 transcriptional program, suggesting the therapeutic potential of PEP for autoimmune diseases.


Assuntos
Autoimunidade , Encefalomielite Autoimune Experimental , Camundongos , Animais , Fosfoenolpiruvato/metabolismo , Células Th17 , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL
18.
HGG Adv ; 4(2): 100182, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36845668

RESUMO

Phosphoenolpyruvate carboxykinase (PCK) plays a critical role in cytosolic gluconeogenesis, and defects in PCK1 cause a fasting-aggravated metabolic disease with hypoglycemia and lactic acidosis. However, there are two genes encoding PCK, and the role of the mitochondrial resident PCK (encoded by PCK2) is unclear, since gluconeogenesis is cytosolic. We identified three patients in two families with biallelic variants in PCK2. One has compound heterozygous variants (p.Ser23Ter/p.Pro170Leu), and the other two (siblings) have homozygous p.Arg193Ter variation. All three patients have weakness and abnormal gait, an absence of PCK2 protein, and profound reduction in PCK2 activity in fibroblasts, but no obvious metabolic phenotype. Nerve conduction studies showed reduced conduction velocities with temporal dispersion and conduction block compatible with a demyelinating peripheral neuropathy. To validate the association between PCK2 variants and clinical disease, we generated a mouse knockout model of PCK2 deficiency. The animals present abnormal nerve conduction studies and peripheral nerve pathology, corroborating the human phenotype. In total, we conclude that biallelic variants in PCK2 cause a neurogenetic disorder featuring abnormal gait and peripheral neuropathy.


Assuntos
Doenças do Sistema Nervoso Periférico , Fosfoenolpiruvato Carboxiquinase (ATP) , Camundongos , Animais , Humanos , Fosfoenolpiruvato , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Gluconeogênese/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Doenças do Sistema Nervoso Periférico/genética
19.
FEBS Lett ; 597(4): 585-597, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36708098

RESUMO

Phosphoenolpyruvate carboxykinase (PEPCK) catalyses the reversible reaction of decarboxylation and phosphorylation of oxaloacetate (OAA) to generate phosphoenolpyruvate (PEP) and CO2 playing mainly a gluconeogenic role in green algae. We found two PEPCK isoforms in Chlamydomonas reinhardtii and we cloned, purified and characterised both enzymes. ChlrePEPCK1 is more active as decarboxylase than ChlrePEPCK2. ChlrePEPCK1 is hexameric and its activity is affected by citrate, phenylalanine and malate, while ChlrePEPCK2 is monomeric and it is regulated by citrate, phenylalanine and glutamine. We postulate that the two PEPCK isoforms found originate from alternative splicing of the gene or regulated proteolysis of the enzyme. The presence of these two isoforms would be part of a mechanism to finely regulate the biological activity of PEPCKs.


Assuntos
Chlamydomonas reinhardtii , Fosfoenolpiruvato , Chlamydomonas reinhardtii/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Isoformas de Proteínas , Fenilalanina , Citratos
20.
J Physiol ; 601(1): 69-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419345

RESUMO

Brown adipose tissue (BAT) is rich in mitochondria containing uncoupling protein 1 (UCP1), and dissipates energy through thermogenesis. However, even though BAT mass and its UCP1 content increase in rodents chronically fed a high-fat sucrose-enriched (HFS) diet, marked expansion of adiposity still occurs in these animals, suggesting insufficient BAT-mediated HFS diet-induced thermogenesis. Thus, the objective of this study was to investigate the metabolic and molecular mechanisms that regulate BAT thermogenesis in HFS-induced obesity. To accomplish this, rats were fed either a standard chow or HFS diet for 8 weeks. Subsequently, glucose and fatty acid metabolism and the molecular mechanisms underlying these processes were assessed in freshly isolated primary BAT adipocytes. Despite increasing BAT mass and its UCP1 content, the HFS diet reduced uncoupled glucose and palmitate oxidation in BAT adipocytes. It also markedly diminished tyrosine hydroxylase content and lipolysis in these cells. Conversely, glucose uptake, lactate production, glycerol incorporation into lipids, palmitate incorporation into triacylglycerol (TAG), phosphoenolpyruvate carboxykinase and glycerol kinase levels, and lipoprotein lipase and cluster of differentiation 36 gene expression were increased. In summary, a HFS diet enhanced glyceroneogenesis and shifted BAT metabolism toward TAG synthesis by impairing UCP1-mediated substrate oxidation and by enhancing fatty acid esterification in intact brown adipocytes. These adaptive metabolic responses to chronic HFS feeding attenuated BAT thermogenic capacity and favoured the development of obesity. KEY POINTS: Despite increasing brown adipose tissue (BAT) mass and levels of thermogenic proteins such as peroxisome proliferator-activated receptor γ coactivator 1α, carnitine palmitoyltransferase 1B and uncoupling protein 1 (UCP1), an obesogenic high-fat sucrose-enriched (HFS) diet attenuated uncoupled glucose and fatty acid oxidation in brown adipocytes. Brown adipocytes diverted glycerol and fatty acids toward triacylglycerol (TAG) synthesis by elevating the cellular machinery that promotes fatty acid uptake along with phosphoenolpyruvate carboxykinase and glycerol kinase levels. The HFS diet increased glucose uptake that supported lactate production and provided substrate for glyceroneogenesis and TAG synthesis in brown adipocytes. Impaired UCP-1-mediated thermogenic capacity and enhanced TAG storage in BAT adipocytes were consistent with reduced adipose triglyceride lipase and tyrosine hydroxylase levels in HFS diet-fed animals.


Assuntos
Tecido Adiposo Marrom , Glicerol , Ratos , Animais , Tecido Adiposo Marrom/metabolismo , Proteína Desacopladora 1/genética , Glicerol/metabolismo , Glicerol Quinase/metabolismo , Fosfoenolpiruvato/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dieta , Obesidade/etiologia , Obesidade/metabolismo , Triglicerídeos/metabolismo , Adipócitos Marrons/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo , Termogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...